MYRES on
Heat, Helium, Hotspots, and Whole Mantle Convection

Dynamics of Thermal Boundary Layers and Convective Upwellings

Shijie Zhong

Department of Physics
University of Colorado at Boulder

August 2004
Outline

1. Introduction.
 a) Thermal boundary layers (TBL) and their dynamics.
 b) Layered versus whole mantle convection and heat budget.
 c) Plume heat flux.

5. Plume population and heat transfer.

6. Conclusions and remaining issues.
What is a thermal boundary layer (TBL)?

- A layer across which there is a significant temperature difference and the heat transfer is primarily via heat conduction, for example, the oceanic lithosphere.

Temperature:

\[T = T_s + (T_m - T_s) \text{erf}[y/(4kt)^{1/2}] \]

Surface heat flux:

\[Q \sim k(T_m - T_s)/\delta \]
How many TBLs are there in the mantle?
Why does a TBL form?

- A TBL forms as a consequence of thermal convection.
- Why does thermal convection occur?

\(\rho, \alpha, \eta_0, \text{ and } \kappa \).

\[D: \text{ box height; } \Delta T = T_b - T_s \]

At \(t=0 \),
\[T = T_s + (D-z)\frac{\Delta T}{D} + \delta T \]

\(q_o \sim k\frac{\Delta T}{D} \)
Governing equations for isochemical convection

Conservation of mass: \(\nabla \cdot \mathbf{u} = 0 \),

of momentum: \(-\nabla P + \nabla \cdot [\eta(\nabla \mathbf{u} + \nabla^T \mathbf{u})] + RaT \mathbf{e}_z = 0 \),

and of energy: \(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \nabla^2 T + H \)

\(Ra = \rho g \alpha \Delta T D^3 / (\eta_0 \kappa) \) Rayleigh number.
\(\eta = 1 \) for isoviscous flow.
\(H = 0 \) for basal heating or no internal heating.

When \(Ra > Ra_{cr} \sim 10^3 \), convection.
Thermal convection with $Ra=1e4 > Ra_{cr}$

Basal heating and isoviscous
Convection transfers heat more efficiently

If no convection,

\[q_o \sim \frac{k(T_b-T_s)}{D}. \]

As \(2\delta<D\), \(q_s>q_o\).

Nu: Nusselt #

\[Nu = \frac{q_s}{q_o} > 1. \]

\(q_b = q_s\) for basal heating convection.
Control on the thickness of TBL, δ

δ is limited by TBL instabilities such that

$$Ra_\delta = \rho g \alpha (T_i - T_s) \delta^3 / (\eta \kappa) \sim Ra_{cr} \sim 10^3.$$ As a consequence, plumes form.

$$\delta \sim Ra^{-1/3} \text{ and } Nu \sim \delta^{-1} \sim Ra^{1/3}$$
Control on the thickness of TBL, δ

$\delta \sim Ra^{-1/3}$ and $Nu \sim Ra^{1/3}$

Linear and Plume structures in 3D thermal convection with $\eta(T)$ and 40% internal heating

A simulation from CitcomS [Zhong et al., 2000]
Outline

1. Introduction.
 a) Thermal boundary layers (TBL) and their dynamics.
 b) Layered versus whole mantle convection and heat budget.
 c) Plume heat flux.

5. Plume population and heat transfer.

6. Conclusions and remaining issues.
Whole mantle convection

Seismic structure

- Long-wavelength geoid [Hager, 1984].
- Coupling plate motion to the mantle [Hager & O’Connell, 1981].

Bunge & Richards [1996]
Seismic evidence for compositional anomalies at the base of the mantle

Ni et al. [2002]

Masters et al. [2000]
Heat budget of the Earth

(A modified version for the whole mantle convection [Davies, 1999])

- \(Q_{\text{total}} \approx 41 \) TW.
- \(Q_{\text{mantle}} \approx 36 \) TW.
- \(Q_{\text{sec}} \approx 9.3 \) TW (70 K/Ga).
- For a mantle with the MORB source material, \(Q_{\text{rad}} \approx 3-7 \) TW (???).
- \(Q_{\text{core}} \approx 3.5 \) TW (plume flux ???).
- Unaccounted for:
 \(Q_{\text{mantle}} - Q_{\text{rad}} - Q_{\text{sec}} - Q_{\text{core}} = 18 \) TW

Two TBLs: the surface and CMB
A layered mantle with an enriched bottom layer

- To increase Q_{rad} in the bottom layer, $Q_{\text{rad_btm}}$.
- $Q_{\text{comp}} = Q_{\text{core}} + Q_{\text{rad_btm}}$.

Three TBLs: the surface, CMB, and the interface.
A variety of layered mantle models (Tackley, 2002)

Hofmann [1997]

Becker et al. [1999]

L. Kellogg et al. [1999]
Review of thermochemical convection studies, I

- **Stability**
 1. against overturn.
 2. against entrainment.
- **Structure**

Other studies: Sleep [1988]; Davaille [1999]; Zhong & Hager [2003]
Review of thermochemical convection studies, II

Isolated Piles

Thick bottom layer

Thin bottom layer

Tackley, 2002

Favor a thin bottom layer.

Domes

Davaille et al., 2002

Require the bottom layer more viscous. But how?
\(Q_{\text{core}} \sim \text{plume heat flux } Q_{\text{plume}} \) for a layered mantle?

- \(Q_{\text{core}} \sim 3.5 \text{ TW becomes really questionable, as it was estimated from } Q_{\text{plume}}, \) assuming a whole mantle convection and other things [Davies, 1988; Sleep, 1990].

- At best, \(Q_{\text{plume}} \) of 3.5 TW should now be \(\sim Q_{\text{comp}} = Q_{\text{core}} + Q_{\text{rad_btm}}. \)
Outline

1. Introduction.
 a) Thermal boundary layers (TBL) and their dynamics.
 b) Layered versus whole mantle convection and heat budget.
 c) Plume heat flux.

5. Plume population and heat transfer.

6. Conclusions and remaining issues.
Swell topography and hotspots

Volcanic chain and swell
Hawaiian Swell and Islands

Swell width ~ 1200 km;
Swell height ~ 1.35-1.5 km.

Best quantified by Wessel [1993] and Phipps Morgan et al. [1995].
Origins of the hotspots and swell topography

- **Shallow origins** (fractures [Turcotte and Oxburgh, 1972]).
- **Deep origins** (plumes [Morgan, 1971]).

10s [Crough, 1983] to 5000 plumes [Malamud & Turcotte, 1999].
Hotspot and thermal plumes

Romanowicz and Gung [2002]

Montelli et al. [2004]
A plume model for Hawaiian swell

Ribe and Christensen [1994]
Estimate plume heat flux [Davies, 1988; Sleep, 1990]

The rate at which new surface mass anomalies are created due to the uplift:
\[M = hwV_p (\rho_m - \rho_w) \]

Plume flux of mass anomalies:
\[B = \pi r^2 u \Delta \rho = \pi r^2 u \rho \Delta T \alpha \]
\[M = B \]

Plume heat flux:
\[Q = \pi r^2 u \rho \Delta T C_p = B C_p / \alpha \]
\[Q = MC_p / \alpha = hwV_p (\rho_m - \rho_w) C_p / \alpha \]
Hawaiian swell as an example

$w \sim 1000 \text{ km}; \ h \sim 1 \text{ km}; \ V_p \sim 10 \text{ cm/yr};$

$\rho_m - \rho_w = 2300 \text{ kg/m}^3; \ \alpha = 3 \times 10^{-5} \text{ K}^{-1};$

$C_p = 1000 \text{ J kg}^{-1} \text{ K}^{-1}$

$$Q = h w V_p (\rho_m - \rho_w) C_p / \alpha$$

$Q \sim 0.24 \text{ TW} \sim 0.7\% \text{ of } Q_{\text{mantle}}$
Total plume heat flux

[Davies, 1988; Sleep, 1990]

- $Q_{\text{plume}} \sim 3.5 \text{ TW from } \sim 30 \text{ hotspots.}$
- **Considered as** Q_{core}, **in a whole mantle convection**, **as plumes result from instabilities of TBL at CMB** (???).
- **Further considered as evidence for** largely **internally heating mantle convection**, **as** $Q_{\text{core}}/Q_{\text{mantle}} \sim 90\%$ [Davies, 1999] (???).
$Q_{\text{core}} \neq Q_{\text{plume}}$ for a layered mantle!

- $Q_{\text{plume}} \sim Q_{\text{comp}} = Q_{\text{core}} + Q_{\text{rad}_\text{btm}}$ because plumes result from TBL instabilities at the compositional boundary, if the proposal by Davies and Sleep is correct.

- If so, Q_{plume} poses a limit on how much $Q_{\text{rad}_\text{btm}}$ into the bottom layer!
Outline

1. Introduction.
 a) Thermal boundary layers (TBL) and their dynamics.
 b) Layered versus whole mantle convection and heat budget.
 c) Plume heat flux.

5. Plume population and heat transfer.

6. Conclusions and remaining issues.
Questions

1. Should we expect thousands of small plumes that transfer significant amount of heat but produce no surface expression in terms of topography and volcanism (i.e., invisible)? as suggested by Malamud & Turcotte [1999].

2. To what extent does Q_{plume} represent Q_{btm} of the convective system including surface plates?

3. Should we care at all about Q_{plume}?
Dependence of plume population on Ra

$Ra=3 \times 10^6$

$Ra=3 \times 10^7$

$Ra=10^7$

$Ra=10^8$
There is a limit on number of plumes

The limit is ~75 plumes, if scaled to the Earth’s mantle.
Heat transfer by thermal plumes

Convective heat flux: $q \sim \rho c u_z (T - T_{ave})$, important outside of TBLs.

For hot upwellings, $T - T_{ave} > 0$ and $u_z > 0$, so $q_{uw} > 0$.

For cold downwellings, $T - T_{ave} < 0$ and $u_z < 0$, so $q_{dw} > 0$ as well.

For these basal heating cases, $q_{uw} \sim q_{dw} \sim 1/2 q_s = 1/2 q_b$, i.e., upwelling plumes only transfer $1/2$ of heat flux from the bottom!
The cooling effect of downwellings on Q_{btm}

Labrosse, 2002
Quantifying Q_{uw}
[internal heating + $\eta(T)$+spherical geometry]

$Q_i/Q_s = 0$

$Q_i/Q_s = 26\%$

$Q_i/Q_s = 57\%$

How does Q_{uw}/Q_s (or Q_{plume}/Q_s) depend on internal heating rate Q_i/Q_s?

How does Q_{uw}/Q_{btm} depend on internal heating rate Q_i/Q_s?
Now the answers ...

Remember 90% internal heating rate suggested based on $Q_u/Q_s \approx 10\%$?

If $Q_i/Q_s \approx 40\%$, then $Q_u/Q_{btm} \approx 20\%$. As $Q_u \approx 3.5$ TW, $Q_{btm} \approx 17$ TW.
Summary

- Plume heat flux remains a constraint on the heat from the bottom layer (core or the bottom layer of the mantle).
- \(Q_i/Q_s \approx 40\% \) and \(Q_{\text{plume}}/Q_{\text{btm}} \approx 20\% \), or \(Q_{\text{btm}} \approx 17 \text{TW} \) (??).
- A thin layer (100’s km) at the base of the mantle, \(D’’ \)?
- Expect some (10’s) plumes that produce observable surface features.
“Dynamic (residual)” Topography

Panasyuk and Hager, 2000
Remaining issues

• Heat budget:
 i) Plume heat flux: super-plumes (What are they?) and the role of weak asthenosphere.
 ii) Secular cooling.
 iii) Wish list (easy to say but hard to do, perhaps). Try to estimate uncertainties for both seismic and geochemical models.
We have a long way to go ...