Mapping and modeling
Earth Science Data

Introduction & Segment I: UNIX

Thorsten Becker
University of Southern California, Los Angeles

Università di Roma TRE, June 2012
Introduction and scope of course
Who I am

- **Education:** Geophysicist, trained as a physicist
- **Objective:** Solid Earth dynamics and evolution
- **Disciplines:** Geodynamics and seismology
- **Tools:** Numerical modeling
Scripting: Simple movies for data analysis
Scripting: Automated shear wave splitting
Data/model analysis
Purpose of this short course

- Introduce a scientific/numeric workflow setting centered around LINUX/UNIX
- Provide background for using the USC Earth Science Computing Environment
- Provide skills and tools for making maps and analyzing Earth science data with GMT
- Comment on some other analysis, visualization and typesetting tools
- What is your objective/background?
Contents

Operating system: UNIX (where we live)
Script programming (how we fiddle)

Mapping with GMT I (what we make)
Mapping with GMT II
Mapping with GMT III

Visualization and data analysis
Segment I: Computing and UNIX
Lecture 1
Purpose of this segment

- Introduce UNIX-based (e.g. LINUX, Mac OSX) computing and scientific work flow environments by providing pointers for further information
- Describe what I think are best practices in moderate to high-performance computing
 - I will make judgments and provide specific recommendations
 - I cannot possibly provide a comprehensive, fair, or entirely up to date overview
Typographic conventions

- Most important:
 - links to web based information are blue

- A lot of information (and examples) are on the web

- UNIX (or shell) commands are usually written in bold

- Input into the shell is usually in Courier font.
Contents segment I: UNIX

- UNIX (or LINUX, used synonymously here): what and why
- The file system and Window managers
- Shell environment
- Editing files
- Command line tools
- Scripts and GUIs
UNIX: What is UNIX?

- an operating system that originated in the 70ies
- build for multi-user, multi-tasking, scalable (that was new way back then)
- runs on all computing hardware, including iPOD
- many flavours, free: LINUX, BSD (a version made it into OSX), Solaris (SUN)
- they are all *kind of* the same thing, your mileage may vary (e.g. directory structure)
- there is convergence between LINUX, Mac OS, and Windows look and feel
UNIX: Why use UNIX?

- can use same tools and programs on laptop, workstation, and supercomputer (less important if virtualization is available)
- flexible, modular, powerful
- seamless integration of C and F90 programs, shell commands, and post-processing (UNIX is written in C)
- all important numerical tools and libraries are available
- LINUX is open (security!), and ubiquitous
UNIX: Why (not) use UNIX?
Remote desktop: **NX** export your workplace everywhere
Virtualization: run any OS on whatever
UNIX: This overview

- describes typical, ca. anno 2010, scientific workplace set-up in natural sciences
- tries to not
 - spend a lot of time on point-and-click GUIs
 - discuss vapor ware
 - discuss cutting-edge programs (with unclear support situation and user base)
- will be out of date tonight when it comes to specific software, but won't when it comes to UNIX and GMT
- Might be a bit old school ("old dog")
Structure of a UNIX system

Hardware
- RAH
- hard disk

File system
- /home/lebowski
- /dev/mux

Shell/Terminal (bash, csh, tcs, zsh)

GUIs, file managers,
- high and software
Hello: Gnome window manager
File system: Graphical

Window managers and tools

- GNOME, KDE
- Provide support and interface with other apps (search, web, access files on other servers, etc.)
LINUX comes with a range of fairly useful GUI based software

- OpenOffice – for editing text (like Word), making presentations (like Powerpoint), and running spreadsheets (like Excel)
- GIMP – interactive image manipulation
- The only real problem is Illustrator.
- My suggestions for a single platform:
 - OS-X user: you have Linux already
 - Windows user: run Linux in a virtual machine
 - Undecided: Use a Mac (if you can afford it)
File system:

But where is UNIX? The shell

- open a *shell* (terminal) to get a *command line*
- type *commands*, such as `ls` to list the contents of a directory

Even if you regularly use Mac OS-X or GNOME, some knowledge of the background can save the day!
File system: Hardcore: The actual file system

- user *versus* super-user (administrator) setup
- tree structure of files within directories:
 - `/usr/local` has software
 - `/dev` has devices
 - `/home/$USER` has all the user's files, which might be subdivided into folders like
 - `/mnt/data/` might hold shared data/storage
Structure of a UNIX system

- Hardware
 - RAM
 - hard disk
- File system
 - /home/lebowski
 - /dev/null
- Shell/Terminal (bash, csh, etc.)
- GUI, file manager, high-level software
Experimentation time
(q, CTRL-C to stop, CTRL-Z to pause)

- echo hello world
- passwd
- date
- hostname
- arch
- uname -a
- uptime
- who am i
- who
- id
- last
- w
- time sleep 5
- history
- last
- w
- top
- echo $SHELL
- echo {con,pre}{sent,fer}{s,ed}
- ls
- man ls
- clear
- cal 2012
- top
- locate passwd
- df, df -h
- du -sh .
File system: Naming conventions

- suffixes indicate type of file: file.dat, file.c, file.f, file.f90, file.awk, file.txt, file.tex, file.ps (and determines helper applications)
- UNIX is case sensitive
- normally, use lower case for files and directories
- some symbols (e.g.: *, %, ?) are special, if you want those literally you got to quote (*, \%, \?)
- different quotes (”, ’, `) have different meanings
File system:
ls: list contents of directories

becker@jackie:~ > ls
calendar data dokumente idl_gmt mail plates public_html RCS subduct TEX
unison.log
CITCOM Desktop evolution ioffice mylibs progs quakes Screenshot.png teaching tmp
becker@jackie:~ > ls -F -l
total 6500
-rw-r--r-- 1 becker users 1638 Jun 17 07:39 calendar
drwxrwxr-x 4 becker users 4096 Jun 17 07:39 CITCOM/
drwxr-xr-x 35 becker users 4096 Jul 12 15:22 data/
drwx------- 2 becker users 4096 Jul 26 17:20 Desktop/
drwxr-xr-x 25 becker users 4096 Jul 12 07:48 dokumente/
drwx------- 7 becker users 4096 Jun 17 11:53 evolution/
drwxr-xr-x 3 becker users 20480 Jul 27 15:00 idl_gmt/
drwxr-xr-x 3 becker users 4096 Jun 17 07:39 ioffice/
drwx------- 2 becker users 4096 Jul 7 12:21 mail/
drwxr-xr-x 15 becker users 4096 Jun 17 07:46 mylibs/
drwxr-xr-x 12 becker users 4096 Jun 17 07:46 plates/
drwxr-xr-x 12 becker users 4096 Jun 17 07:46 progs/
drwxr-xr-x 27 becker users 12288 Jul 18 19:20 public_html/
drwxr-xr-x 4 becker users 4096 Jun 17 07:47 quakes/
drwxrwxr-x 2 becker users 4096 Jun 17 07:39 RCS/
-rw-r--r-- 1 becker users 35775 Jul 27 16:15 Screenshot.png
drwxrwxr-x 5 becker users 4096 Jun 17 07:47 subduct/
lrwxrwxrwx 1 becker users 19 Jun 17 07:39 teaching -> dokumente/teaching/
drwxr-xr-x 29 becker users 4096 Jul 26 17:39 TEX/
lrwxrwxrwx 1 becker users 12 Jun 16 17:28 tmp -> /mnt/dos/tmp/
-rw------- 1 becker users 6508582 Jul 27 15:01 unison.log
File system: Permissions

- **first character:** - (file), d (directory), l (link)
- **r:** read
 w: write
 x: execute or list
- **u:** user
 g: group
 a: all
 o: other
 - `chmod u+x file`
 - `chmod a+r *.dat`
 - `chmod -R o-rwx my_stuff`
- **whoami, id:** output of user and group
File system:

Commands have options

- command output and workings can be modified by adding `-x` (or `x` for `tar`)
- `ls`:
 - `ls -F`
 - `ls -la`
- usually, you can do “`command --help`” to learn more
- often, there are long version: `ls --all --full`
- man pages (RTFM): “`man command`”
File system:

If you like some options

- Use an alias

```bash
#alias convert '/usr/bin/convert -density 150 -background white -flatten -trim +repage'
alias rm
alias opteron 'ssh -X -f twb@hpc-opteron.usc.edu xterm -ls -title hpc-opteron'
alias bunzip 'bunzip2'
alias epsmerge 'epsmerge --paper letter -par --print --postscript -lmar 0.01 -rmar 0.01 -tmar 0.01 -bmar 0.01 -xcs 0.1 -ycs 0.1'
alias mroe more
alias cd.. 'cd ..'
alias ls 'ls -F'
alias new 'ls -ltF| more'
alias m 'more'
alias t 'tail'
alias h 'head'
```
File system commands I

- **cp**: copy files (will normally overwrite!)
 - `cp` filea fileb
- **rm**: remove files (for real!)
 - `rm` goneforever.dat
 - `rm` -i goneforever.dat
- **mkdir**: make directories
 - `mkdir` new_dir/
- **cd**: change directories (`cd ..; cd -; cd ~`)
- **pwd**: print current directory
File system:
File system commands II

- **scp**: copy files across machines
 - `scp` filea user@machine.usc.edu:~/directory/fileb

- **more**: display files page by page
 - `more` filea.dat

- **ln**: create (symbolic) links (*shortcuts* in Windows)
 - `cd` new_dir
 - `ln` -s ../old_dir/script .
 - soft vs. hard: deletion of hard link deletes file
UNIX tools: Command line tools for file management

- **more, less**: display files page by page interactively
- **cat**: display file
- **head**: display first few lines of file
- **tail**: guess
- **paste**: align files with columns row by row
 - paste file1.dat file2.dat
- **wc**: count words, lines, and bytes of file
Combining tools: Pipes and redirection (bash example)

- `>:` redirect stdout, `<:` stdin, `2>`: stderr
- `>>`: append, `|`: pipe
 - `cat` file1.dat > combined.dat
 - `cat` file2.dat >> combined.dat
 - `cat` file1.dat | `wc`
- `myconvectioncode.exe` < input.dat
- `echo` Whatever! > /dev/null
- `mycode` > log.dat 2> error.dat
UNIX tools: grep and sort

- **grep**: find patterns in file
 - `grep my_function *.c | more`
 - `grep -ni my_function.*c` (disregard case and list line numbers)

- **diff**: compare content of files (see `meld`)
 - `diff file1.txt file2.txt`

- **sort**: sort row data
 - `sort -n +2 file.dat`

- **uniq**: only print unique lines
 - `sort -n splitting.dat | uniq > stations.dat`
File system:
Using regular expressions

- * (all): `cp *.dat new_dir/
- [pat] (pattern): `cp file[1-5].dat new_dir
- ? (single letter/number): `cp file???.dat new_dir
- `rm -rf * (DON'T TRY IT, IT WORKS)